a2 United States Patent

Balmin et al.

US009400767B2

US 9,400,767 B2
Jul. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

SUBGRAPH-BASED DISTRIBUTED GRAPH
PROCESSING

Applicant: International Business Machines

Corporation, Armonk, NY (US)
Inventors: Andrey Balmin, San Jose, CA (US);
Severin A. Corsten, Bornheim (DE);
John A McPherson, Jr., San Jose, CA
(US); Shirish Tatikonda, San Jose, CA
(US); Yuanyuan Tian, San Jose, CA
(US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 220 days.
Appl. No.: 14/108,812
Filed: Dec. 17,2013

Prior Publication Data

US 2015/0170316 Al Jun. 18, 2015

Int. Cl1.

GO6F 15/16
GO6F 17/10
GO6F 17/30

(2006.01)
(2006.01)
(2006.01)

GO6F 17/50
U.S. CL
CPC

(2006.01)

GOG6F 17/10 (2013.01); GO6F 17/30958
(2013.01); GO6F 17/509 (2013.01)
Field of Classification Search

CPC ... GO6T 1/20; GO6T 15/005; GO9G 5/363;
GO9G 5/393; GOGF 3/14
USPC i 345/503

See application file for complete search history.

oy
e

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0049022 Al* 2/2008 Sherb G06Q 10/06
345/440

2011/0078652 Al* 3/2011 Mani ...coovvivrviniinnn. GOG6F 8/10
717/105

2012/0239797 Al 9/2012 Agrawal et al.

2013/0024412 Al 1/2013 Gongetal.

2013/0024479 Al 1/2013 Gongetal.

OTHER PUBLICATIONS

Y. Tian, et al., From “Think Like a Vertex” to “Think Like a Graph,”
The Proceedings of the VLDB Endowment (PVLDB, 7(3), 2013; 12
pages.

(Continued)

Primary Examiner — Devona Faulk
Assistant Examiner — Nicole Gillespie
(74) Attorney, Agent, or Firm — Cantor Colburn LLP

(57) ABSTRACT

Embodiments relate to subgraph-based distributed graph pro-
cessing. An aspect includes receiving an input graph compris-
ing a plurality of vertices. Another aspect includes partition-
ing the input graph into a plurality of subgraphs, each
subgraph comprising internal vertices and boundary vertices.
Another aspect includes assigning one or more respective
subgraphs to each of a plurality of workers. Another aspect
includes initiating processing of the plurality of subgraphs by
performing a series of processing steps comprising: process-
ing the internal vertices and boundary vertices internally
within each of the subgraphs; detecting that a change was
made to a boundary vertex of a first subgraph during the
internal processing; and sending a message from a first
worker to which the first subgraph is assigned to a second
worker to which a second subgraph is assigned in response to
detecting the change that was made to the boundary vertex of
the first subgraph.

14 Claims, 8 Drawing Sheets

s
Tt

¥
.
=
R

US 9,400,767 B2
Page 2

(56) References Cited A. Schwing, et al., “Distributed Message Passing for Large Scale
Graphical Models,” Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference Jun. 20-25, 2011 pp. 1833-1840.

OTHER PUBLICATIONS G.Yu, et al., “Large Scale Graph Data Processing on Cloud Comput-

ing Environments,” Chinese Journal of Computers, vol. 34, No. 10.;

D. Lasalle, et al., “Multi-Threaded Graph Partitioning,” 27th IEEE Oct. 2011; pp. 1-15.

International Parallel and Distributed Processing Symposium, 2013;

pp. 1-12. * cited by examiner

U.S. Patent Jul. 26, 2016 Sheet 1 of 8 US 9,400,767 B2

o
5
e
o 1w
&5 B OO
B o
73
w
&= .
- {2
ol
o LD
o o
g i
ey
3

U.S. Patent Jul. 26, 2016 Sheet 2 of 8 US 9,400,767 B2

—
=\
, <
\ e
& g
______ s
= :m
P o)
- :‘“”
e b d
\g/
€ —
=\,
.
£ L3
wwwwwwwwwww e
H ®
}
= Al o
= ;""": EL.
H
O b
o
w‘»
N
TS N\,
o4 P * o
H
£ Pt D
s "'&"" e Sl
ek
3 &
ol 20
T 5
agnann T

U.S. Patent

Jul. 26, 2016 Sheet 3 of 8

]
]

US 9,400,767 B2

Partition input Graph into Subgraphs

- 201

¥

Agsign Subgraphs o Workers in
Distributed Graph Processing System

202

¥

Perform Internal Processing Within bach
Subgraph by Workers

203

¥

Perform Processing Between Subgraphs
by Sending Messages o Owners of
Boundary Verlices Basad on
Mrocessing of Block 203

- 204

¥

Global Synchronization Barrier

205

NO Hrocessing

\Compie‘ia‘?

— 207

U.S. Patent Jul. 26, 2016 Sheet 4 of 8 US 9,400,767 B2

g,

Determing that 2 Message Needs to be Sent fo the Owner
of 3 Boundary Variex Based on Procassing within - 301
a First Subgraph

%

Detarmine Second Subgraph that is Owner of Boundary Vertex p— 302

%

if Second Subgraph is Being Processed by Same Worker as
First Subgraph, Use internal Buffer Memory to Send Message; | 03

Message is Accessed by Second Subgraph during
Same Supersiep

kA

If Second Subgraph is Being Processed by Different Worker
from First Subgraph, Send Message VIA Netwark;
Message is Accessed by Second Subgraph During

Newt Supersiep

304

FIG. 3

U.S. Patent Jul. 26, 2016 Sheet 5 of 8 US 9,400,767 B2

- 410
400A ! T—— w T
i i i E i i i E
Y 401 404 402 | 435 4G3 408
= B e
P I i ey
1 401 403 401 ; 404 402 405
s z i o
;‘Tf"%w?:;; e ",.,,»;;,,-Q/
e e “...:==~=:.">£<“.:=-<~.~_ N, - ~.
e PRI o o e T
2 41 402 411 E 403 401 404
‘W _W:" "M
mnnmot T ez e m‘“w
i
3 401 407 461 ; 404 461 403
MM e V
S
MW,M>§NMM/ : e
A E ety e pa— e
4 401 401 401 | 401 401 402
i e ——
E e “M\%
5 401 401 40 E 401 407 401
i i
E el —
B 401 401 401 ; 401 461 401
]
i

FIG. 4A
{Prior Art)

U.S. Patent Jul. 26, 2016 Sheet 6 of 8 US 9,400,767 B2

i
i
i
4008 ! — 40
x a g T — l l
0 | 401 404 402 | 408 403 406
i
P .
- j
1 an 403 00| 401 404
wﬁt‘-‘.‘:::-_ﬁh__‘m“ ,.Lr-"""::;_,.....—--"""" .
M—"’Mmr :: e Mm“"‘”""-m-...n
2 | 4o 401 a0 |4 401 403
|
P =
T 4p 401 401 A 401 40
j
,-«““‘"";ﬂ/ﬂ-—
..-—’*"""M ;
M ol F
& | 401 401 a1)| A 401 401
i
i
§
b

FiG. 4B

US 9,400,767 B2

Sheet 7 of 8

Jul. 26, 2016

U.S. Patent

G 'Old
NEOS ~ g% ~, Y205~
A \ \
AJCHbIEA ASCHISN AJCHbIEA
RYng B RYng RYng
SERIOM JMIOA SERIOM
.\\ 7 .\\
NLOG -~ 108 J ¥i0g -
A
/
£08 -
304

U.S. Patent Jul. 26, 2016 Sheet 8 of 8 US 9,400,767 B2

Compiter
Program Product
GGO

/

Program Code
Logic
504

O

Computer
Usable/Readable
Madium

82

US 9,400,767 B2

1
SUBGRAPH-BASED DISTRIBUTED GRAPH
PROCESSING

BACKGROUND

The present disclosure relates generally to distributed
graph processing, and more specifically, subgraph-based dis-
tributed graph processing.

Analysis of graph, or network, data is relatively complex
for large datasets. To meet the challenge of processing large
amounts of graph data, a number of distributed graph pro-
cessing systems have emerged, such as Pregel™ and
GraphLab™. Such graph processing systems divide input
graphs into partitions, and employ a vertex-based program-
ming model to support iterative graph computation. In a ver-
tex-based graph processing system, each vertex contains
information about itself and all its outgoing edges, and com-
putation is performed at the level of a single vertex. For
example, in Pregel, a common vertex-centric computation
involves receiving messages from other vertices, updating the
state of the vertex and associated edges, and sending mes-
sages to other vertices. In Graphl.ab, a vertex may read or
update the vertex’s own data or data of its neighbor vertices.
In the vertex-centric model, a vertex has limited information.
Each vertex only knows about its own neighborhood, and
information is propagated through neighbor vertices one hop
at a time.

BRIEF SUMMARY

Embodiments include a method, system, and computer
program product for subgraph-based distributed graph pro-
cessing. Anaspect includes receiving an input graph compris-
ing a plurality of vertices and edges. Another aspect includes
partitioning the input graph into a plurality of subgraphs, each
subgraph comprising internal vertices that are owned by the
subgraph, and boundary vertices, each of the boundary ver-
tices corresponding an internal vertex that is owned by
another subgraph, wherein each vertex in the input graph is
owned by a single respective subgraph. Another aspect
includes assigning one or more respective subgraphs to each
of a plurality of workers of a distributed graph processing
system. Another aspect includes initiating processing of the
plurality of subgraphs by performing a series of processing
steps, wherein a processing step comprises: processing the
internal vertices and boundary vertices internally within each
of the subgraphs, wherein each of the workers performs the
internal processing of each worker’s respective one or more
subgraphs; detecting that a change was made to a boundary
vertex of a first subgraph during the internal processing; and
sending a message from a first worker to which the first
subgraph is assigned to a second worker to which a second
subgraph is assigned in response to detecting the change that
was made to the boundary vertex of the first subgraph.

Additional features and advantages are realized through
the techniques of the present disclosure. Other embodiments
and aspects of the disclosure are described in detail herein.
For a better understanding of the disclosure with the advan-
tages and the features, refer to the description and to the
drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other

10

15

20

25

30

35

40

45

50

55

60

65

2

features, and advantages of the disclosure are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1A depicts a graph in accordance with an embodi-
ment;

FIG. 1B depicts subgraphs of the graph of FIG. 1A in
accordance with an embodiment;

FIG. 2 depicts a flowchart of a method for subgraph-based
distributed graph processing in accordance with an embodi-
ment

FIG. 3 depicts a flowchart of a method of sending a mes-
sage during subgraph-based distributed graph processing in
accordance with an embodiment;

FIG. 4A depicts an example of vertex-based distributed
graph processing;

FIG. 4B depicts an example of subgraph-based distributed
graph processing in accordance with an embodiment;

FIG. 5 depicts a distributed computing system for sub-
graph-based distributed graph processing in accordance with
an embodiment; and

FIG. 6 illustrates a computer program product in accor-
dance with an embodiment.

DETAILED DESCRIPTION

Embodiments described herein are directed to subgraph-
based distributed graph processing. An input graph is parti-
tioned into a plurality of partitions, each partition comprising
a subgraph of the input graph, for distributed processing by a
plurality of workers in the distributed graph processing sys-
tem. Subgraph-based distributed graph processing makes use
of structural information inside of each partition. A subgraph
includes internal vertices, which are owned by the subgraph,
and boundary vertices, which are connected to one or more
internal vertices in the subgraph but are owned by another
subgraph. Operations involving internal vertices are per-
formed internally to the subgraph, and messaging is only
required for operations involving boundary vertices. This
reduces the total amount of messaging required to process the
graph, which may reduce total processing time, as commu-
nication between vertices within a partition does not require
message passing or scheduling machinery.

The subgraph-based distributed graph processing system
includes a plurality of workers, which may comprise a plu-
rality of computers or processors. One of the workers may act
as a master worker that coordinates the remaining slave work-
ers. The master worker partitions the input graph into the
plurality of partitions, or subgraphs. In embodiments in
which the distributed graph processing system is processing a
relatively large input graph that does not fit in the memory of
a single worker, the input graph may be partitioned by mul-
tiple workers. Each subgraph comprises a set of internal ver-
tices, the internal vertices’ respective outgoing edges, and the
boundary vertices that are linked to the internal vertices via
the outgoing edges. Each vertex in a graph is uniquely iden-
tified by a vertex identifier, which may comprise, for
example, a string or a number. In some embodiments, the
master worker uses a hash of a vertex’s identifier to assign the
vertex to a partition; however, such a hash-based partitioning
strategy may create random partitions. A range-based parti-
tioning algorithm may be used in some embodiments to cre-
ate partitions of directly connected vertices, which enables
relatively efficient processing of internal vertices within each
subgraph. In range-based partitioning, the internal vertices in
each subgraph may correspond to a set, or range, of vertices

US 9,400,767 B2

3

having consecutive vertex identifiers. Messages for opera-
tions involving boundary vertices may also be routed between
workers.

After the subgraphs are distributed among the workers, a
series of processing steps, which may be referred to as super-
steps, are performed until processing of the input graph is
completed. The supersteps are separated by global synchro-
nization barriers. In a superstep, all processing that can be
performed for internal vertices within each of the plurality of
subgraphs is completed; then messages regarding boundary
vertices are exchanged between subgraphs, and operations
are performed based on those messages.

The number of partitions may be greater than the number of
workers in some embodiments, so that each worker can work
on multiple partitions at the same time. In some embodi-
ments, worker may utilize multiple processing threads in a
thread pool, and each thread within a worker may work on a
respective partition. If two subgraphs are being handled by
threads within the same worker, messages between the two
subgraphs may be accessed asynchronously in the same
superstep via, for example, a local buffer memory of the
worker.

In some embodiment, the data type of the vertex attributes
in the input graph may comprise a wrapper class type, for
example, Integer, Double, Long, Float, Short, Byte or Bool-
ean in java. In such an embodiment, the subgraph-based dis-
tributed graph processing system may automatically convert
the data type of the vertex attributes to a primitive type such as
int, double, long, float, short, byte, or boolean. In addition,
collections of objects of the wrapper class type are automati-
cally converted into more efficient data structures, such as
arrays, using the corresponding primitive type. Use of a
primitive type for vertex attributes and array data structures
simplifies processing of the input graph.

FIG. 1A illustrates an embodiment of a graph 100, and
FIG. 1B illustrates an embodiment of the graph 100 after
partitioning into subgraphs 110, 111, and 112. Graph 100
includes vertices 101, 102, 103, 104, 105, and 106, which are
connected as shown in FIG. 1A. As shown FIG. 1B, subgraph
110 includes internal vertices 101 and 102, and boundary
vertices 104 and 106. Subgraph 111 includes internal vertices
103 and 104, and boundary vertices 101 and 105. Subgraph
112 includes internal vertices 105 and 106, and boundary
vertices 101 and 104. Internal vertices of a subgraph are those
with full neighborhood information inside the subgraph,
whereas boundary vertices are those that appear in the neigh-
bor list of an internal vertex. A vertex can appear in multiple
subgraphs, but is only an internal vertex in exactly one sub-
graph. The subgraph in which a vertex is an internal vertex is
the owner of the vertex. The owner of a vertex is decided by
the partitioner. As an example, although vertex 101 appears in
all the three subgraphs 110-112 in FIG. 1, itis only an internal
vertex in 110, and is a boundary vertex in both subgraphs 111
and 112, thus the owner of A is subgraph 110. A boundary
vertex in a subgraph comprises a local copy of an internal
vertex in that is owned by another subgraph; the master copy
of a vertex is stored in the subgraph in which the vertex is an
internal vertex. For example, boundary vertices 104 and 106
in subgraph 110 are local copies within subgraph 110 of the
internal vertex 104 in subgraph 111 and internal vertex 106 in
subgraph 112 respectively. If a change is made to boundary
vertices 104 in subgraph 110, a message is sent between
subgraph 110 and subgraph 111 regarding the change. Pro-
cessing of internal vertex 104 in subgraph 111 is then per-
formed within subgraph 111 based on the message. The mes-
sage may be routed between subgraph 110 and subgraph 111
by a master worker in some embodiments. Each internal

20

40

45

4

vertex of a partition may have one of two states, e.g., active or
inactive, during processing. However, a boundary vertex does
not have any state.

FIG. 2 illustrates a flowchart of an embodiment of a method
200 for subgraph-based distributed graph processing. First, in
block 201, the graph is partitioned into a plurality of sub-
graphs. Each of the plurality of subgraphs is made up of
internal vertices and boundary vertices, such as were shown
with respect to FIGS. 1A-B. Partitioning may be performed in
any appropriate manner, and may be performed by a single
master worker, or in a distributed manner by multiple work-
ers, in various embodiments. First, a number of partitions is
determined, and the input graph is divided into subgraphs
corresponding to the determined number of partitions. In
some embodiments, hash-based partitioning based on the
vertex identifiers may be used. In other embodiments, range-
based partitioning based on the vertex identifiers may be
used. Range based partitioning may reduce the number of
edges that connect different subgraphs, which may reduce the
number of messages that are needed between subgraphs
between processing. Each subgraph comprises internal verti-
ces, which are owned solely by the subgraph, outgoing edges
of'the internal vertices, and boundary vertices that are directly
connected to the internal vertices via the outgoing edges.
Each boundary vertex in a subgraph is a local copy corre-
sponding to an internal vertex that is owned by another sub-
graph. During partitioning, the attributes of the plurality of
vertices may be converted from a wrapper class type to a
primitive type in some embodiments. Collections of objects
of'the wrapper class type may be converted to more efficient
data structures, such as arrays, using the primitive type in
some embodiments.

Next, in block 202, the partitions, or subgraphs, are
assigned to workers in the distributed graph processing sys-
tem. A worker may comprise a computer or processor, and
may comprise a simultaneous multithreaded processor in
some embodiments. A worker may be assigned multiple sub-
graphs to process concurrently in some embodiments.

Then, flow proceeds to block 203, in which internal pro-
cessing is performed by each of the workers on the worker’s
assigned subgraph(s). Processing involving internal vertices
within a subgraph is completed in block 203. For processing
involving a boundary vertex, changes are made to the local
copy of the data for the boundary vertex that is stored within
the subgraph. Then, in block 204, processing is performed
between subgraphs by sending messages regarding changes
that were made to boundary vertices to the workers that are
processing the subgraphs that own the boundary vertices. The
changes made to boundary vertices are thereby propagated to
the subgraph in which a boundary vertex is an internal vertex.
Block 204 is discussed in further detail below with respect to
FIG. 3. Then, in block 205, all of the workers complete
processing for the current superstep, and there is a global
synchronization barrier. In some embodiments of the global
synchronization barrier, the master worker tracks which
workers have completed processing for the current superstep,
and when all of the workers have completed processing for
the current superstep, the master worker indicates to the other
workers that the superstep has completed. Blocks 203-205
comprise a single superstep in the overall processing of the
graph. Flow then proceeds to block 206, in which it is deter-
mined whether processing of the input graph is complete. The
determination of block 206 may be made by the master
worker in some embodiments, and be made based on whether
all of the vertices in the input graph are at an inactive state in
some embodiments. If it is determined in block 206 that
processing of the input graph is not complete, flow proceeds

US 9,400,767 B2

5

from block 206 back to block 203, and blocks 203-205 are
performed concurrently by each of the workers within the
distributed graph processing system in the next superstep.
Supersteps comprising blocks 203-206 are repeated until it is
determined in block 206 that processing of the input graph is
complete, at which point flow proceeds to block 207, and
method 200 ends.

FIG. 3 depicts a flowchart of an embodiment of a method
300 of sending a message during subgraph-based distributed
graph processing. First, in block 301, the worker that is pro-
cessing a first subgraph determines that there was a change to
a boundary vertex in the first subgraph during the internal
processing of the first subgraph (such as was performed in
block 203 of FIG. 2), and that a message regarding the change
needs to be sent to the owner of the boundary vertex. Next, in
block 302, a second subgraph that owns the boundary vertex
is determined, and the worker that is processing the second
subgraph is also determined. The second subgraph is the
subgraph in which the boundary vertex is an internal vertex;
each vertex in the input graph is only an internal vertex in a
single subgraph. In block 303, if the worker that is processing
the second subgraph that was determined in block 302 is the
same as the worker that is processing the first subgraph, a
message regarding the change is routed by the worker to the
second subgraph from the first subgraph via, for example, a
local buffer memory located within the worker. The message
may then be accessed in the local memory by the second
subgraph during the same superstep during which the mes-
sage was sent. In block 304, if the worker that is processing
the second subgraph that was determined in block 302 is
different from the worker that is processing the first subgraph,
amessage regarding the change is sent to the second subgraph
from the first subgraph via, for example, a network. The
message may then be accessed by the second subgraph during
the next superstep.

In some embodiments, the processing as described in
method 200 of FIG. 2 may be performed as follows. In block
202, when the subgraphs are assigned to workers, the label
value associated with each vertex is initialized the vertex’s
respective vertex identifier, and each vertex’s status is set to
active. Then, in the supersteps comprising blocks 203 and
204, first, in block 203, each internal vertex sends its label to
its neighbor vertices on each outgoing edge within the ver-
tex’s subgraph. Each internal and boundary vertex then com-
putes the minimum value of the vertex’s received labels, and,
if the minimum value is less than the vertex’s label, the vertex
updates its label with the minimum value. Then, in block 204,
if a boundary vertex updated its label in block 203, a message
regarding the update is sent to the owner of the internal vertex
corresponding to the boundary vertex, and internal vertices
then compute the minimum and perform label updating based
onthe received messages. I[f a vertex was not changed in block
204, the vertex may change its status to inactive. Processing
may be determined to be complete in block 206 when all
vertices in the input graph are inactive. This is illustrated with
respect to FIGS. 4A-B, which illustrate an example 400A of
execution of a weakly connected component (WCC) algo-
rithm as performed using vertex-based processing (FIG. 4A),
and an example 400B of subgraph-based processing accord-
ing to an embodiment (FIG. 4B).

In each of FIGS. 4A-B, each row represents the state of a
graph after completion of a given superstep. Initially (i.e., at
superstep 0), a graph including vertices 401-406, with that are
interconnected by connections 410, is divided into two sub-
graphs. The first subgraph includes vertices 401, 404, and
402; the second subgraph includes vertices 405, 403, and 406.
Connections 410 connect vertex 401 to vertex 402; vertex 404

20

25

35

40

45

60

6

to vertex 405 and vertex 403; vertex 402 to vertex 401 and
vertex 403; vertex 405 to vertex 404 and vertex 406, vertex
403 to vertex 404 and vertex 402; and vertex 406 to vertex
405. Then, in each superstep, messages, represented by
arrows, are sent between the connected vertices. The mes-
sages are sent both between the first and second subgraphs,
and internally to the first and second subgraphs. Messages are
sent in each of supersteps 1-6 until processing is completed
and each of the vertices holds the value of the lowest vertex,
indicating that all of the vertices are interconnected. In FIG.
4B, at each superstep, internal processing of the first and
second subgraphs is performed first, and messages are only
sent between subgraphs after internal processing is com-
pleted, as discussed with respect to methods 200 and 300 of
FIGS. 2-3. Only 4 supersteps are required to complete pro-
cessing in FIG. 4B, and a reduced number of messages are
required as compared to FIG. 4A.

FIG. 5 illustrates an embodiment of a distributed comput-
ing system 500 for subgraph-based distributed graph process-
ing. Distributed computing system 500 may comprise, for
example, a cluster of servers, and may implement method 200
of FIG. 2 and method 300 of FIG. 3 as described above.
Computer system 500 includes a plurality of workers 501 A-N
that are interconnected by anetwork 503. Each of the workers
501A-N may comprise multiple processing threads in some
embodiments, and also include a respective internal buffer
memory 502A-N. Each of the workers 501A-N may process
one or more respective subgraphs concurrently using the
worker’s multiple processing threads. For a message that is
sent between subgraphs that are owned by the same worker of
workers 501A-N, the message may be sent via the worker’s
respective buffer memory of buffer memories 502A-N. For a
message that is sent between subgraphs that are being pro-
cessed by different workers of workers 501 A-N, the message
is sent via network 503. A worker of the plurality of workers
501A-N may be designated as a master worker in some
embodiments; the master worker may perform partitioning of
the input graph into subgraphs, and may also route messages
via network 503.

Referring now to FIG. 6, in one example, a computer
program product 600 includes, for instance, one or more
storage media 602, wherein the media may be tangible and/or
non-transitory, to store computer readable program code
means or logic 604 thereon to provide and facilitate one or
more aspects of embodiments described herein.

Technical effects and benefits include reduction in the mes-
sages that are required during distributed processing of a
graph.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the disclosure. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present disclosure has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the disclosure in the form disclosed. Many

US 9,400,767 B2

7

modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the disclosure. The embodiments were chosen and
described in order to best explain the principles of the disclo-
sure and the practical application, and to enable others of
ordinary skill in the art to understand the disclosure for vari-
ous embodiments with various modifications as are suited to
the particular use contemplated.

Further, as will be appreciated by one skilled in the art,
aspects of the present disclosure may be embodied as a sys-
tem, method, or computer program product. Accordingly,
aspects of the present disclosure may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a “cir-
cuit,” “module” or “system.” Furthermore, aspects of the
present disclosure may take the form of a computer program
product embodied in one or more computer readable medium
(s) having computer readable program code embodied
thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the

10

15

20

25

30

35

40

45

50

55

60

65

8

remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present disclosure are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

What is claimed is:

1. A method for subgraph-based distributed graph process-
ing, comprising:

receiving an input graph comprising a plurality of vertices

and edges;

partitioning the input graph into a plurality of subgraphs,

each subgraph comprising internal vertices that are
owned by the subgraph, and boundary vertices, each of
the boundary vertices corresponding an internal vertex

US 9,400,767 B2

9

that is owned by another subgraph, wherein each vertex
in the input graph is owned by a single respective sub-
graph;

assigning one or more respective subgraphs to each of a

plurality of workers of a distributed graph processing
system; and
initiating processing of the plurality of subgraphs by per-
forming a series of processing steps, wherein a process-
ing step comprises:
processing the internal vertices and boundary vertices
internally within each of the subgraphs, wherein each
of the workers performs the internal processing of
each worker’s respective one or more subgraphs;
detecting that a change was made to a boundary vertex of
a first subgraph during the internal processing; and
sending a message from a first worker to which the first
subgraph is assigned to a second worker to which a
second subgraph is assigned in response to detecting
the change that was made to the boundary vertex of
the first subgraph;
determining whether the first worker and the second
worker are the same worker;
based on determining that the first worker and the second
worker are the same worker, sending the message via
an internal buffer memory of the first worker; and
based on determining that the first worker and the second
worker are different workers, sending the message via
anetwork that connects the plurality of workers in the
distributed graph processing system; and
wherein the first worker comprises a plurality of process-
ing threads, and processes a respective plurality of sub-
graphs concurrently using the plurality of processing
threads, and further comprising:
based on sending the message via the internal buffer
memory of the first worker, accessing the message
asynchronously in the second subgraph during a same
processing step in which the message was sent.
2. The method of claim 1, wherein each of the boundary
vertices in a subgraph is directly connected to at least one of
the internal vertices in the subgraph via an edge.
3. The method of claim 1, wherein the second subgraph
owns an internal vertex corresponding to the boundary vertex
to which the change was made in the first subgraph, and
wherein the internal vertex in the second subgraph comprises
a master copy of vertex information of the internal vertex.
4. The method of claim 3, further comprising updating the
vertex information of the internal vertex in the second sub-
graph based on the message in a subsequent processing step.
5. The method of claim 1, wherein each of the vertices in
the input graph comprises a unique vertex identifier, and
wherein the internal vertices of each subgraph comprise a
respective range of consecutive vertex identifiers.
6. The method of claim 1, wherein each of the vertices
comprises vertex attributes comprising a wrapper class type,
and further comprising:
converting the vertex attributes from the wrapper class type
to a primitive type during the partitioning; and

converting a collection of objects of the wrapper class type
of'avertex into an array data structure using the primitive
type during the partitioning.

7. A computer program product for subgraph-based dis-
tributed graph processing, the computer program product
comprising:

a non-transitory computer readable storage medium hav-

ing program code embodied therewith, the program
code executable by a processor for:

10

20

25

30

40

45

65

10

receiving an input graph comprising a plurality of vertices

and edges;

partitioning the input graph into a plurality of subgraphs,

each subgraph comprising internal vertices that are
owned by the subgraph, and boundary vertices, each of
the boundary vertices corresponding an internal vertex
that is owned by another subgraph, wherein each vertex
in the input graph is owned by a single respective sub-
graph;

assigning one or more respective subgraphs to each of a

plurality of workers of a distributed graph processing
system; and

initiating processing of the plurality of subgraphs by per-

forming a series of processing steps, wherein a process-

ing step comprises:

processing the internal vertices and boundary vertices
internally within each of the subgraphs, wherein each
of the workers performs the internal processing of
each worker’s respective one or more subgraphs;

detecting that a change was made to a boundary vertex of
a first subgraph during the internal processing; and

sending a message from a first worker to which the first
subgraph is assigned to a second worker to which a
second subgraph is assigned in response to detecting
the change that was made to the boundary vertex of
the first subgraph;

determining whether the first worker and the second

worker are the same worker;

based on determining that the first worker and the second
worker are the same worker, sending the message via
an internal buffer memory of the first worker; and

based on determining that the first worker and the second
worker are different workers, sending the message via
a network that connects the plurality of workers in the
distributed graph processing system; and

wherein the first worker comprises a plurality of process-

ing threads, and processes a respective plurality of sub-

graphs concurrently using the plurality of processing

threads, and further comprising:

based on sending the message via the internal buffer
memory of the first worker, accessing the message
asynchronously in the second subgraph during a same
processing step in which the message was sent.

8. The computer program product of claim 7, wherein each
of'the boundary vertices in a subgraph is directly connected to
atleast one of the internal vertices in the subgraph via an edge.

9. The computer program product of claim 7, wherein the
second subgraph owns an internal vertex corresponding to the
boundary vertex to which the change was made in the first
subgraph, and wherein the internal vertex in the second sub-
graph comprises a master copy of vertex information of the
internal vertex.

10. The computer program product of claim 9, further
comprising updating the vertex information of the internal
vertex in the second subgraph based on the message in a
subsequent processing step.

11. The computer program product of claim 7, wherein
each of the vertices in the input graph comprises a unique
vertex identifier, and wherein the internal vertices of each
subgraph comprise a respective range of consecutive vertex
identifiers.

12. A system for subgraph-based distributed graph pro-
cessing comprising:

a distributed graph processing system comprising a plural-

ity of workers connected by a network, the distributed
graph processing system configured to:

US 9,400,767 B2

11

receive an input graph comprising a plurality of vertices
and edges;
partition the input graph into a plurality of subgraphs, each
subgraph comprising internal vertices that are owned by
the subgraph, and boundary vertices, each of the bound-
ary vertices corresponding an internal vertex that is
owned by another subgraph, wherein each vertex in the
input graph is owned by a single respective subgraph;
assign one or more respective subgraphs to each of the
plurality of workers of the distributed graph processing
system; and
initiate processing of the plurality of subgraphs by per-
forming a series of processing steps, wherein a process-
ing step comprises:
processing the internal vertices and boundary vertices
internally within each of the subgraphs, wherein each
of the workers performs the internal processing of
each worker’s respective one or more subgraphs;
detecting that a change was made to a boundary vertex of
a first subgraph during the internal processing; and
sending a message from a first worker to which the first
subgraph is assigned to a second worker to which a
second subgraph is assigned in response to detecting
the change that was made to the boundary vertex of
the first subgraph;
determine whether the first worker and the second worker
are the same worker;

10

12

based on determining that the first worker and the second
worker are the same worker, sending the message via
an internal buffer memory of the first worker; and

based on determining that the first worker and the second
worker are different workers, sending the message via
the network that connects the plurality of workers in
the distributed graph processing system; and

wherein the first worker comprises a plurality of process-

ing threads, and processes a respective plurality of sub-

graphs concurrently using the plurality of processing

threads, and further comprising:

based on sending the message via the internal buffer
memory of the first worker, accessing the message
asynchronously in the second subgraph during a same
processing step in which the message was sent.

13. The system of claim 12, wherein the second subgraph
owns an internal vertex corresponding to the boundary vertex
to which the change was made in the first subgraph, and
wherein the internal vertex in the second subgraph comprises
a master copy of vertex information of the internal vertex.

14. The system of claim 13, further comprising updating
the vertex information of the internal vertex in the second
subgraph based on the message in a subsequent processing
step.

